Launch-type boiler

A launch-type, gunboat or horizontal multitubular boiler[1] is a form of small steam boiler. It consists of a cylindrical horizontal shell with a cylindrical furnace and fire-tubes within this.

Their name derives from the boiler's popular use at one time for small steam yachts and launches. They have also been used in some early Naval torpedo boat destroyers.

Contents

Description

The boiler has similarities with both the locomotive boiler (the multiple small fire-tubes), and the Scotch marine boiler (the short cylindrical furnace). As a fire-tube boiler it has generous heating area and so is an effective steamer. Firebox construction is also simpler, thus cheaper, than for the locomotive firebox.

The firebox is of limited size though, and unlike the locomotive boiler cannot expand beyond the size of the boiler shell. This limits the sustained output that is possible. The grate and ashpan are also limited in size, the grate being a set of bars part-way across the furnace tube and the ashpan the restricted space beneath this. These features limit the boiler's ability to burn hard bituminous coal and they require a supply of Welsh steam coal, or similar, instead. The small ashpan also restricts their ability to steam for long periods.

One drawback of the boiler was the large diameter of the furnace relative to the boiler shell, and thus the small steam space above the crown of the furnace. This made the boilers prone to priming, particularly on a rough sea, where water could be carried over into the steam pipe.

A more serious danger was the limited reserve of the water level, where the water level had only to drop by a small amount owing to inattention before the furnace crown would be exposed, with likely overheating and risk of boiler explosion. The boiler was safe when correctly fired, but could not be left unattended.

The boiler did see some popularity in mainland Europe, as a boiler for small portable engines. A similar boiler, but arranged with return fire-tubes, was built in America as the Huber boiler.

Railway locomotives

The boiler was only rarely used for railway locomotives, although they were notably used by Sir Arthur Heywood for his 15" minimum gauge railways at Duffield Bank and Eaton Hall.[2]

Other minimum gauge railways, notable the 18 inch gauge works railways at Crewe, Horwich and the Guinness brewery in Dublin, also used lauch-type boilers, owing to the limited space between the frames for a conventional firebox.

Lentz boiler

A large launch-type boiler with a corrugated furnace, described as the Lentz boiler, was fitted to the Heilmann steam-electric locomotives of 1890.[3] The boiler design was German in origin. A similar boiler, the 'Vanderbilt' was used in the USA.[4]

Lancashire & Yorkshire Railway

The Lancashire & Yorkshire Railway suffered problems with firebox stays, leading to a boiler explosion with an 0-8-0 Class 30 near Knottingley in 1901[5][6] Their Chief Mechanical Engineer Henry Hoy, sought to avoid the problems of the stayed firebox altogether and so developed an alternative boiler and firebox. This used a corrugated tubular furnace and cylindrical outer firebox, as for the Lentz.[4] The furnace was also of steel, rather than the copper used for fireboxes at this time.[4] Hoy's involvement was ironic, as a major cause of the original accident had been Hoy's invention of a new brass alloy for firebox stays, an inelastic alloy that turned out to have serious drawbacks.[6][7] One Class 30, 396, was rebuilt in 1903 and 20 more were built new with this boiler.[6] The new boiler design did not last long in service and the locomotives were rebuilt with conventional boilers after ten years.[note 1][6] Hoy's successor, George Hughes, described these boilers unfavourably in papers read to the I. Mech E..[8][9]

References

  1. ^ The eight to ten year interval before rebuilding would be a typical service life for such a boiler. It indicates that the boilers were adequate, and were not withdrawn from service merely to replace them, but also that the experiment was not considered a success and so they were not continued with.
  1. ^ Harris, K. N. (1974). Model Boilers and Boilermaking. MAP. pp. 50. ISBN 0852423772. 
  2. ^ Heywood, A.P. (1974) [1881, Derby: Bemrose]. Minimum Gauge Railways. Turntable Enterprises. ISBN 0-902844-26-1. "The boiler was of the launch type, a cylindrical shell with a cylindrical fire-box terminating in tubes. This pattern of boiler, though giving less heating surface for its size than one of ordinary locomotive design, has the great merit of having no fire box projecting below the barrel, thus enabling the over-hang of the frame beyond the wheel-base to be equalized at each end, a matter of the first importance in small tank engines. Its low first cost and the ease with which it can be kept in order are additional advantages. So well was I satisfied with the working, that in the four boilers since designed for my locomotives I have adhered to the original plan, which was copied from some shunting engines made by Mr. Ramsbottom for the London and North Western Railway. I go so far as to think that, without getting rid of a depending fire-box, no really satisfactory tank engine can be constructed for a small gauge railway unless idle wheels are introduced, a proceeding that cannot too strongly be deprecated. The gradients, which are almost invariably the concomitants of these small lines, make it essential that the whole of the available weight should be utilized for adhesion." 
  3. ^ "Heilmann Locomotives". Loco locos. 19 Oct 2007. http://www.aqpl43.dsl.pipex.com/MUSEUM/LOCOLOCO/heilmann/heilmann.htm. 
  4. ^ a b c Ahrons, E.L. (1966). The British Steam Railway Locomotive. I, to 1925. Ian Allan. p. 351. 
  5. ^ Hewison, Christian H. (1983). Locomotive Boiler Explosions. David and Charles. pp. 110–111. ISBN 0-7153-8305-1. 
  6. ^ a b c d Cook, A.F. (1999). Raising Steam on the LMS. RCTS. pp. 23–26. ISBN 0-901115-85-1. 
  7. ^ Hewison, Locomotive Boiler Explosions, p. 111
  8. ^ Hughes, George (Feb 1906). Proc. I. Mech E.. 
  9. ^ Hughes, George (July 1909). Proc. I. Mech E..